

A software platform to support dynamically reconfigurable Systems-on-Chip under the GNU/Linux operating system

26th July 2005

Alberto Donato donato@elet.polimi.it

Relatore: Prof. Fabrizio Ferrandi Correlatore: Ing. Marco Domenico Santambrogio

$$\mu$$
-LAB

Index

- Aim of the work
- The reconfigurable platform:
 - Hardware architecture
 - Partial dynamic reconfiguration flows
- Software architecture:
 - The ICAP kernel module
 - The IP-Core Manager
- Tests and results
- Future work

FPGAs reconfiguration capabilities allow creation of Systems-on-Chip whose hardware components can be modified, added and removed at runtime.

Provide software support for **dynamic partial reconfiguration** on Systems-on-Chip running the **LINUX operating system**.

Issues:

- Partial reconfiguration process management from the OS
- Addition and removal of hardware reconfigurable components
- Automatic loading and unloading of specific drivers for the IP-Cores upon components configuration/deconfiguration
- Easier programming interface for specific drivers

Architecture derived from Caronte:

- General purpose processor
- Memory (BRAM, DDR)
- ICAP
- Reconfigurable components

- PPC405 processor
- SRAM and SDRAM memory
- Flash memory
- Xilinx ICAP IP-Core

I/O peripherals:

- Xilinx UARTLite interface
- Ethernet controller
- GPIO LEDS
- 7-Segments display

Reconfiguration of areas of the FPGA fabric without interfering with the rest of the system.

Two different approaches: small-bits and module-based reconfiguration.

Small-bits manipulation:

- change single reconfigurable elements, such as slices
- useful to modify the configuration of hardware components of the system

Module-based reconfiguration:

- addition or removal of system components
- changes in the resources available to the system

Software Side: Previous Work

Self-reconfigurable platform:

PowerPc/MicroBlaze processor

- ICAP component
- Stand-alone application using the XPART API

Supports small-bits reconfiguration.

Egret architecture:

- Modular hardware/software architecture
- Based on the LINUX OS
- Dynamic configuration of hardware modules and loading of drivers

Composed of two main elements:

- Driver to support partial reconfiguration
- Manager for the IP-Cores devices

The software architecture provides:

- Access to ICAP component from userspace
- Interface between IP-Cores
 low-level drivers and kernel
- Access to reconfigurable devices from userspace processes

Implements a device driver, adds kernel support for the Xilinx ICAP component.

- Access from userspace via standard device node mechanism (i.e. /dev/icap)
- Masks hardware details
- Reconfiguration data provided in the form of *partial bitstream files*

Reconfiguration process using the ICAP kernel module:

- partial bitstream is copied into ICAP module buffer from a userspace process
- 2. reconfiguration ioctl
 call is performed from userspace
- 3. the kernel module sends partial configuration data to the ICAP component

The hardware ICAP component is accessed through the *memory mapping* mechanism.

 μ -lad

A LINUX kernel module which implements a unified infrastructure for the management of the IP-Cores.

- IP-Cores *Plug-and-Play*
- Runtime loading of specific IP-Cores drivers
- Management of operations common to all drivers
- Access to reconfigurable components from userspace
- Standardize and simplify writing of specific drivers

The IP-Core Manager acts as a *layer* between the operating system kernel and the low-level device drivers.

The low-level drivers contain:

- system calls implementation
- devices initialization and shutdown functions

The drivers also contain a stub:

- provides standard kernel module interface
- provides module initialization and shutdown functions

Alberto Donato

Registration process of a new IP-Core with the IPCM:

- 1. interrupt is received from the HW-IPCM
- 2. read device data (base address, device id, address range)
- 3. load low-level driver if not already loaded
- 4. the low-level driver initialization function registers driver data structures
- 5. data structures for the new device is initialized

Tests and Results

Comparison between original *Caronte* architecture and the one supporting LINUX

Resource	Orignal Caronte		Caronte LINUX		Total
	Elem.	Perc.	Elem.	Perc.	available
Slice Flip Flops	1843	18%	2369	24%	9856
4-input LUTs	1727	17%	2173	22%	9856
Occupied Slices	1818	36%	2262	45%	4928
Bonded IOBS	107	27%	168	42%	396
Block RAM	32	72%	32	72%	44
DCMS	2	50%	2	50%	4

Resources usage in different hardware architectures supporting LINUX

Resource	Base Arch.		No Ethernet		No Flash		Total
	Elem.	Perc.	Elem.	Perc.	Elem.	Perc.	available
Slice Flip Flops	5079	51%	2369	24%	4668	47%	9856
4-input LUTS	5883	59%	2173	22%	5598	56%	9856
Occupied Slices	4926	99%	2262	45%	4711	95%	4928
Bonded IOBs	205	51%	168	42%	36	81%	396
Tbufs	64	2%	64	2%	64	2%	2464
Block RAM	36	81%	32	72%	36	81%	44
GCLKS	6	37%	4	25%	6	37%	16
DCMS	2	50%	2	50%	2	50%	4

Small-bits manipulation partial reconfiguration tests

Label	Reconfig.	Bitstream	Configuration	Throughput
	frames	size (Byte)	time (msec)	(MByte/sec)
RC 0	33	24179	15.509	1.487
RC 1	46	40171	25.674	1.492
RC 2	50	44907	28.628	1.496
RC 3	60	51347	32.700	1.497
RC 4	68	53619	34.203	1.495
RC 5	88	67099	42.814	1.495
RC 6	104	60567	38.598	1.459
RC 7	132	100595	64.140	1.496
RC 8	148	94063	60.045	1.494
rc 9	182	119319	76.049	1.496

Reconfiguration times have been measured on the Avnet Virtex-II Pro Development Board:

- with 66 Mhz processor: throughput ~1.5 Mbyte/s
- with 100 Mhz processor: throughput > 3.0 Mbyte/s

Future Work

Possible extensions of the described software architecture:

- extension of the ICAP driver to allow creation of reconfiguration command from reconfiguration data (without pre-synthesized bitstreams)
- runtime calculation of difference bitstreams
- implementation of the HW-IPCM
- extension of the ICAP component to support DMA transfers