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ABSTRACT
Many emerging products in communication, computing and
consumer electronics demand that their functionality re-
mains flexible also after the system has been manufactured
and that is why the reconfiguration is starting to be con-
sidered into the design flow as a new relevant degree of
freedom, in which the designer can have the system au-
tonomously modify its functionalities according to the appli-
cation’s changing needs. Therefore, reconfigurable devices,
such as FPGAs, introduce yet another degree of freedom in
the design workflow: the designer can have the system au-
tonomously modify the functionality carried out by the IP
core according to the application’s changing needs while it
runs. Research in this field is, indeed, being driven towards
a more thorough exploitation of the reconfiguration capa-
bilities of such devices, so as to take advantage of them not
only at compile-time, i.e. at the time when the system is
first deployed, but also at run-time, which allows the recon-
figurable device to be reprogrammed without the rest of the
system having to stop running. This paper presents emerg-
ing methodologies to design reconfigurable applications, pro-
viding, as an example the workflow defined at the Politecnico
di Milano.

1. A BRIEF INTRODUCTION
The concept of reconfigurable computing has been around

since the 1960s, when Gerald Estrin, [1], a computer scien-
tist at the University of California, Los Angeles, proposed
the concept of a computer consisting of a standard proces-
sor augmented by an array of reconfigurable hardware. The
basic idea was to use the array of reconfigurable hardware
to perform a specific task and once the assigned task was
completed the hardware could be reconfigured to perform a
new task.

Before considering the specific area of reconfigurable com-
puting we would like to try to define what reconfiguration
means. [2] provides a first interesting definition:

Definition 1.1. Reconfiguration: The process of phys-
ically altering the location or functionality of network or sys-
tem elements. Automatic configuration describes the way
sophisticated networks can readjust themselves in the event
of a link or device failing, enabling the network to continue
operation.

Reconfiguration is an intuitive concept that is based on

two main elements: a system and a behaviour, in this doc-
ument we will use behaviour or functionality as synonyms.

Figure 1: An overview of a generic system S

Figure 1 presents a generic system S, characterized by a
functionality f , working in a environment E. S can interact
with E through its interface which is composed of a set of
inputs, I, and output O. According to this scenario a recon-
figuration means the ability to change the original function-
ality f in S with a new one, i.e. g, that can also produce,
but it is not necessary, a transformation ρ : f −→ f∗ in the
I and in the O in S.

2. OVERVIEW ON RECONFIGURABLE DE-
SIGN

In the traditional design workflow for embedded systems,
the application was implemented entirely in hardware. How-
ever, due to the increasing spread and capabilities of general
purpose processors suitable for use in such systems, the tra-
ditional methodology has been, over the past two decades,
gradually substituted by another approach, in which a spe-
cific application can obtain better cost/performance trade-
offs by only using custom hardware for the most computa-
tionally demanding functionalities. The other components
of the application are implemented as software tasks running
on a general purpose CPU. In this scenario, which gives
foundation to the area of Hardware-Software Co-Design,
these two parts have to be designed jointly for a given ap-
plication.

One alternative being considered is based on the technol-
ogy of field programmable gate arrays, FPGAs. It should be



obvious that every application would be best served by cus-
tom circuitry targeted specifically for it; and, in fact, ASICs
are often made in response to special needs. But no one
can afford to turn out a custom chip for every application
he wants to run. As technology has improved, a market has
grown up instead for versatile off-the-shelf parts that can be
programmed to emulate arbitrary digital circuits in place of
ASICs. FPGAs are one class of such devices, distinguished
by their ability to be reprogrammed (reconfigured) any num-
ber of times. Therefore, reconfigurable devices, such as FP-
GAs, introduce yet another degree of freedom in the design
workflow: the designer can have the system autonomously
modify the functionality carried out by the IP-Core1 accord-
ing to the application’s changing needs while it runs. Re-
search in this field is, indeed, being driven towards a more
thorough exploitation of the reconfiguration capabilities of
such devices, so as to take advantage of them not only at
compile-time, i.e. at the time when the system is first de-
ployed, but also at run-time, which allows the reconfigurable
device to be reprogrammed without the rest of the system
having to stop running. During the past 6-8 years, we have
seen reconfigurable logic emerge as a commodity technology
comparable to memories and microprocessors. Like memo-
ries, reconfigurable logic arrays rapidly adapt to new tech-
nology since the design consists of an array of simple struc-
tures. Furthermore, again similar to memories, their design
regularity allows designers to focus on adapting the key logic
structures to extract the highest performance from the avail-
able technology.

The versatility and reprogrammability of FPGAs comes
at a price. Only a few years ago, the algorithms that could
be implemented on a single FPGA chip were fairly small. In
1995, for example, the largest FPGAs could be programmed
for circuits of about 15, 000 logic gates at most. Since a fast
32-bit adder requires a couple hundreds of gates, the capabil-
ities of such devices were somewhat bounded. More recently,
though, FPGAs have reached a size where it is possibile to
implement reasonable sub-pieces of an application in a sin-
gle FPGA part. The incorporation of reconfigurable array
logic into a microprocessor provides an alternative growth
path which allows application specialization while benefit-
ing from the full effects of commoditization. Like modern
reconfigurable logic arrays, a single microprocessor design
can be employed in a wide variety of applications. Applica-
tion acceleration and system adaptation can be achieved by
specializing the reconfigurable logic in the target system or
application [3]. This has led to a new concept for comput-
ing: if a processor were to include one or more FPGA-like
devices, it could in theory support a specialized application
specific circuit for each program, or even for each stage of
a program’s execution. The unlimited reconfigurability of
an FPGA permits a continuous sequence of custom circuits
to be employed, each optimized for the task of the moment.
Because FPGAs scale better than superscalar techniques,
such designs have the potential to make better use of con-
tinuing advances in device electronics in the long term [4].

Reconfigurable systems, while providing new interesting
features in the field of hardware/software co–design, also in-

1An Ip-Core is defined as a core described using a HD Lan-
guage (i.e., VHDL or verilog) combined with its communi-
cation infrastructure (i.e. the bus interface)

troduce new problems in their implementation and manage-
ment. This is particularly true for systems that implement
self partial reconfiguration [5–10]. In partial reconfigura-
tion, only portions of the reconfigurable device are involved
by the configuration change. Dynamic reconfiguration al-
lows the device portions that are not directly involved in
the reconfiguration to run without interruption through the
reconfiguration process. A commonly adopted approach is
the definition of predetermined area portions on the device,
reconfigurable slots, in which components implementing dif-
ferent tasks from the specification, or modules, can be con-
figured.

In the simplest scenario, that can be termed Compile
Time Reconfiguration (ctr), the configuration of the FPGA
is loaded at the end of the design phase, and it remains
the same throughout the whole time the application is run-
ning. In order to change the configuration one has to stop
the computation, reconfigure the chip resetting it, and then
start the new application. ctr was for some years the only
kind of reconfiguration available for FPGAs. With the evo-
lution of technology, though, it became possible to consid-
erably reduce the time needed for the chip reconfiguration:
this made it conceivable to reconfigure the FPGA between
different stages of its computation, since the induced time
overhead could be considered acceptable. This process is
called Run Time Reconfiguration (rtr), and the FPGA is
said to be dynamically reconfigurable. rtr can be exploited
by creating what has been termed virtual hardware [11, 12]
in analogy with the concept of virtual memory in general
computers. Consider for instance an application that is too
big to fit into a particular FPGA: one can partition it into
n smaller tasks, each one fitting on the chip. Then it is pos-
sible to load task 1 on the chip, execute it, then reconfigure
the FPGA for task 2 and execute it, and so on till task n is
finished. This idea is called time partitioning, and has been
studied extensively in literature (see [13–16]).

A further improvement in FPGA technology allows mod-
ern boards to reconfigure only some of the logic gates, leav-
ing the other ones unchanged. This partial reconfiguration is
of course much faster in case only a small part of the FPGA
logic needs to be changed. When both these features are
available, the FPGA is called partially dynamically recon-
figurable. Although there are several techniques to exploit
partial reconfiguration (e. g. [6,17,18]), there are only a few
aprroaches for frameworks and tools (e. g. [8, 10, 17–19]) to
design dynamically reconfigurable System on Programmable
Chip,SoPC (e. g. [20–22]). Examples of such frameworks
are the operating systems for reconfigurable embedded plat-
forms which have been analyzed in [23]. In [24] the au-
thors have presented a run-time system for dynamical on-
demand reconfiguration. Several research groups, [6, 25–31]
have built reconfigurable computing engines to obtain high
application performance at low cost by specializing the com-
puting engine to the computation task; some preliminary
results can be found in the literature, [7, 28, 32–36], but no
general framework and no publicly available tools are, at the
best of our knowledge, available.

Due to capabilities described above, FPGAs can be used
to create hardware/software platforms that keep their flexi-
bility at runtime, allowing the development of SoPCs. Mod-
ern FPGAs can also contain a general-purpose processor,



which can be both a physical CPU embedded in the FPGA
fabric, or a soft core, mapped to a part of the FPGA. In
both scenarios there is a software (SW) application running
on the processor (or multiple processors) which realizes some
of the system functionalities, usually acting also as a con-
troller for the hardware (HW) components and interfacing
with them. The SW part of a reconfigurable system can be
either a standalone code, dealing directly with HW at a low
level, or a complete operating system, including multipro-
cessing and resource scheduling.

A standalone code is usually an application which uses SW
libraries exporting functions to interface with HW compo-
nents. This approach can be acceptable for small systems,
involving few components and configurations, but as soon
as the complexity of the system increases, it becomes more
difficult to develop a complete application dealing with all
those aspects. The use of an operating system allows more
flexibility on both sides, since it is possible to implement the
SW part as one or multiple userspace processes, introducing
complex inter-process communication systems and schedul-
ing techniques. HW management is performed by the OS,
offering the processes an interface to access system periph-
erals at a higher level of abstraction. The counterpart for
this added flexibility is the necessity to add support to a
standard operating system for reconfiguration-specific HW
and for reconfigurable components. This means that the
HW and SW parts of the system must be designed in order
to allow the creation of a reconfigurable architecture.

3. THE PROPOSED METHODOLOGY
Aim of this work is to define a methodology and design

flow for reconfigurable embedded systems. The proposed
methodology aims at defining a specification-to-bistream and
autonomous design flow based on, where possible, standard
tools. The idea behind the proposed methodology is based
on the assumption that it is desirable to implement a flow
that can output a set of configuration bitstreams used to
configure and, if necessary, partially reconfigure a standard
FPGA to realize the desired system.

One of the main strengths of the proposed methodol-
ogy is its low-level architectural independence. In fact it
has been developed using both the Caronte [37–39] and the
YaRA (Yet another Reconfigurable Architecture) architec-
ture (developed at Politecnico di Milano), but it can be
easily adapted to different architectural and SoC solutions,
i.e. the RAPTOR2000 system [40]. In particular both the
Caronte and the YaRA solutions share the same structure
that consists of two distinct parts: a static/fixed part con-
taining all the components that have to be present perma-
nently in the final system or that are used very frequently; a
reconfigurable part used to hold the reconfigurable com-
ponents that are dynamically plugged into the system during
the computation phase. Figure 2 presents the physical im-
plementation of these architectures, in particular the YaRA
solution. Starting from the bottom (figure 2 refers to YaRA
implemented over a Virtex II Pro VP7 with a single reconfig-
urable module) the first layer contains BRAM memories and
Power-PC 405, while the second layer contains TBUFs and
TBUFLINE. The upper one contains SLICEs and Switch
Matrices and consequently all user logic, but also the Core-
Connect components are implemented at this level. Finally,

Figure 2: YaRA architecture at the FPGA level

the last layer is the clock level that is, according to Xil-
inx Documentation [17, 41], routed at a different level with
respect to the other signals. This figure explains why a
reconfiguration process involving a module does not abort
communication between other modules: it is due to the fact
that the communications go through TBUFLINEs that are
not involved and modified by the reconfiguration process.

Finally, the software side can be developed either as a
standalone application or with the support of an Operating
System, such as Linux. Even if the standalone approach can
be optimized for each particular scenario to improve timing
performance, it reduces the flexibility of the whole system,
so it is usually desirable to employ a standard Operating
System. Under this assumption, the standard Linux OS has
been enhanced with the addition of support for reconfig-
urable hardware modules ( [21]), nevertheless it is possible
to extend this work to support other Operating Systems as
well. This solution also helps to increase code reuse.

The proposed design flow [42,43] consists mainly of three
phases, as shown in Figure 3:

• High Level Reconfiguration, HLR
The goal of High-Level Reconfiguration is to analyze
the input specification in order to find a feasible rep-
resentation, produced by a first partitioning (cores /
functionalities identification) phase, that can be used
to perform the hardware/software codesign. In the
currently implemented framework, cores are identified
by extraction of isomorphic templates used to gener-
ate a set of feasible covers of the original specification.
Then, the computed cover is placed and scheduled onto
the given device.

• Validation, VAL
Aim of the validation phase is to drive the refinement
cycle of the system design. Using the information pro-
vided by this phase, it is possible to modify the deci-
sions taken in the first part of the flow to improve the
development process.

• LLR (Low Level Reconfiguration)
The last step that has to be performed is the low-level
reconfiguration phase. Goal of this step is the defini-
tion of an automatic generation of the low-level imple-
mentation of the final solution that has to be physi-



Figure 3: The proposed design flow.

cally deployed on the target device and that realizes
the original specification.

3.1 High Level Reconfiguration
In this section we introduce the High Level Reconfiguration

(hlr) component of the flow: the definition of a methodol-
ogy and workflow to partition [44,45] a system specification
into a task graph (in which every task is to be treated as a
reconfigurable module) – tailored to the implementation on
a partially dynamically reconfigurable architecture – and to
schedule it on the same reconfigurable architecture. Figure 4
offers a bird-eye view of its structure, showing the different
stages from the original high-level specification to the par-
titioned system (i.e., cores which are ready to be scheduled
for configuration and execution).

Figure 4: Overview of the High-Level Reconfigura-
tion flow.

The first step, A in Figure 4, is the core identifica-
tion phase. The input of this step is the original specifi-
cation, whose analysis results in cores, i.e. groups of oper-
ations that, reconfigured together as configurable modules,
have optimal sizes (they almost fill an integer number of
columns).

The second part of hlr, B in Figure 4, is the Partition-
ing phase [46]. Using the previously computed set of cores
as its input, this phase produces a set of feasible covers of
the original graph of the specification, following a given pol-
icy. In fact, the previous core identification phase might or
might not produce a cover of the graph, i.e. there may be
parts of the specification which are not included in the union
of the identified cores – or there may be alternative collec-
tions of cores to choose from. This possibility is represented
by the demultiplexer-like block in Figure 4: depending on
the chosen policy, the output might be ready to be passed

on to the scheduling and allocation phase, or not. If not, we
take the top arrow, which leads to three phases: Evaluation,
Core Choice and Partitioning.

During the Evaluation phase, we have a collection of pos-
sible cores to choose from to implement the reconfigurable
system. The decision to implement the cores as static or
reconfigurable hardware modules is left to the later schedul-
ing and allocation phase. During the Core Choice phase, in-
stead, using the data from the Evaluation phase, the cores
to be implemented in the system are determined, accord-
ing to different possible policies. At this point, the cores
have been selected. However, there might still be parts of
the specification which are not included in the union of the
chosen cores. We thus have the Partitioning phase, which
copes with this problem and takes into account the whole
specification by creating new subsets which include the still
uncovered operations.

The generated graph, called Task Dependency Graph (tdg),
is provided as input to the following phase, i.e. the schedul-
ing phase (C in Figure 4), which generates the complete
schedule, driven by predefined policies [44,45,47].

3.2 Validation
The Validation phase defines a novel approach to simu-

late and validate dynamically reconfigurable IP-Core based
architectures. The proposed framework, SyCERS ( [48]),
is based on the SystemC class library and targets the de-
sign of architectures for embedded systems, including re-
configurable ones. The use of the SystemC library enables
the designer to specify a system in its hardware and soft-
ware parts with just one language. SystemC enables the
co-development software and hardware, so it is possible to
describe a complete hardware/software system in a single
specification.

The SyCERS framework is built on top of the SystemC
library and allows the specification of both architecture and
system models. Classes implementing architectures have to
be derived from a set of common interfaces provided in the
framework. In addition, an architecture is built as a C++
library, so it can be imported in any system design. The
system models use the interfaces implemented in the archi-
tecture to access the hardware resources; therefore a model
can be tested in any architecture implementing the same
interface set. A system model can be also parameterized



so that resources, like numbers of available reconfigurable
blocks and memory size, can be changed before execution.
This parameterized model allows testing a system on var-
ious solutions. Finally, the SystemC model of the system,
can be executed in the standard OSCI simulator or even in
the ModelSim commercial simulator [49].

Once a system has been modeled in SystemC and simu-
lated in SyCERS it is possible to obtain several pieces of
information useful to the designer in deciding which is the
best solution to implement his/her embedded system via the
final phase, the Low-Level Reconfiguration.

3.3 Low Level Reconfiguration
Aim of the Low-Level Reconfiguration phase is to generate

the low-level implementation of the desired system necessary
to physically configure the target device to realize the orig-
inal specification.

To develop the system it is necessary to split the Low-
Level Reconfiguration in three parts: the hardware, the re-
configurable and the software sides. On one hand the first
steps that have to be performed in the hardware and recon-
figurable hardware sides are Core Design and the IP-Core
Generation [50, 51], in which the core functionalities of the
original specification are translated in a hardware descrip-
tion language and extended with a communication infras-
tructure that makes it possible to interface them with a bus-
based communication channel. The resulting IP-Core struc-
ture is represented in Figure 5 After these steps, the static

Figure 5: IP-Core final structure.

components of the system are used to realize the YaRA ar-
chitecture, while the reconfigurable components are handled
in a different way, as reconfigurable IP-Cores; in other words
they will be kept separated from the static part of the archi-
tecture during the DEsign SYnthesis phase, while the static
components will be synthesized together with the static part
of the architecture. On the other hand, in the software part
there is the need to develop, in addition to a control appli-
cation that is able to manage the reconfiguration tasks, also
a set of drivers to handle both the reconfigurable and the
static components of the system. All these software appli-
cations are compiled for the processor of the target system.
The compiled software is then integrated, in the Software
Integration phase, with the bootloader, with the Linux OS
and with the Linux Reconfiguration Support [52, 53], that
extends a standard OS with the capability of both perform-
ing reconfigurations of the reprogrammable device and man-

aging the reconfigurable hardware as well as the static hard-
ware, in order to allow runtime plug-in of components. The
following step is the Bitstreams Generation which is neces-
sary to obtain the bitstreams that will be used to configure
and to partially reconfigure the reprogrammable device. Fi-
nally, the last step of the LLR process is the Deployment
Design phase, that aims at creating the final solution, that
consists of the initial configuration bitstream, the partial bit-
streams, the software part (bootloader, OS, Reconfiguration
Support, drivers and controller) and the deployment infor-
mation that will be used to physically configure the target
device.

4. ADAPTIVE COMPUTING FOR THE SOFT-
WARE COMPONENT

The proposed methodology has been applied to the prob-
lem of the identification of the software and the hardware
components of a complex dynamically reconfigurable SoC,
introducing an adaptive computation approach. Adaptivity
implies that due to input changes the output of the system
is updated only re-evaluating those portions of the program
affected by the changes.

As dynamic reconfiguration introduces more flexibility into
the hardware side, adaptive computation could introduce
different behaviors into the software side. Combining these
two techniques together enables a new design scenario in
which hardware and software are moving closer towards each
other reshaping the overlapping gray space. Aim of the work
proposed in [54] was to identify the best trade-off consider-
ing application-specific features in software, which can lend
itself to software-based acceleration and lead to a revision
of the view that certain computationally intensive tasks can
only be accelerated through hardware.

We propose a new methodology, based on the Adaptive
Programming [55] technique, to evaluate and subsequently
perform the hardware and software partitioning for a SoC
that employs dynamically reconfigurable hardware and soft-
ware programmable cores. The adaptive computation con-
cept which we utilize in our realization of the software par-
titions allows the evaluation of the performance of software
execution as a non-static entity. Adaptive computing de-
fines a relationship between the input and output of an
application with respect to the input changes [55, 56]. An
adaptive program responds to input changes by updating
its output, only re-evaluating those portions of the program
affected by the change. Adaptive programming is partic-
ularly beneficial in situations where input changes lead to
relatively small changes in the output. In some cases one
cannot avoid a complete re-computation of the output, but
in many cases the results of the previous computation may
be re-used to obtain the updated output more quickly than a
complete re-evaluation. Previous studies of purely software-
based systems [57], indicated encouraging performance im-
provements. For example, the execution time of the main
procedures used in computational geometry algorithms have
been reduced by up to 250 times.

In such a context, the main innovation of our technique
lies primarily in the way we view and evaluate the software
partition. The basic philosophy is the following. If the in-
put to a program is not expected to change significantly



over different executions, one can exploit this by introduc-
ing the self-adjusting property into the program such that
those computations which do not change across different in-
put sets can be reused instead of being re-executed. This
concept has been introduced to exploit application specific
properties in purely software-based systems in order to ac-
celerate execution time by up to three orders of magnitude
for various applications [54, 56, 57]. We aim at adapting
this paradigm into a mixed hardware and software design
flow for reconfigurable SoCs. Our goal is to develop a new
performance model and an associated evaluation metric to
identify application specific input behavior thereby differen-
tiating between various levels of performance across differ-
ent portions of software modules. This general performance
model is then embedded along with hardware performance
models into our proposed environment, which will yield a
highly flexible means to evaluate the performance impact of
different partitioning and allocation decisions.

5. FUTURE TRENDS
The inherent advantages of hardware over analogous soft-

ware solutions (computational speed, inherent parallelism,
device size) would make it possible to apply reconfigurable
and adaptive computing to systems such as: biomedical
implants (think of an artificial art control), telecommuni-
cations (think of adaptive intelligent routers), intelligent
nanorobot control, artificial audio and vision, intelligent trans-
ducers at bio-electronic interfaces.

It is possible to envision for reconfigurable technologies
the possibility to move from the prototyping and very spe-
cialized low-volume arenas to the implementation of real-
world systems capable of adapting their behavior and re-
sources thousands times a second, according to the sur-
rounding environment evolution. This capability would widen
the horizons of embedded digital system applications. Some
of the main challenges towards such scenarios would be:

1. to enable distributed self-reconfiguration capabilities
of digital devices;

2. the implementation of distributed training algorithms
over such architectures;

3. to specify and formulate application solutions in terms
of such computing paradigm.

At the moment, potential benefits of massively recon-
figurable digital systems in real-life applications is far be-
yond sight, therefore the definition of novel architecture can
be considered as key point for the future of this research
area. Potentially, continuously trained devices could be im-
plemented with reconfigurable logic technologies, allowing
small devices to stabilize, with proper actions, physical pa-
rameters depending on huge sets of factors; with proper
training procedures implemented in a distributed way over
the whole device, behavior could be specified as the maxi-
mization of desired target functions.

Reconfiguration would not be provided from the outside as
an input to the device, but would be computed autonomously
by the device itself, according to the target behavior and to
the environment. This would make such devices partico-
larly suited for applications of pervasive computing/control

of any kind, e.g., medical pilot plants, neurological control
systems, adaptive communication infrastructures.
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