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ABSTRACT

Dynamic reconfigurable embedded systems are gathering,
day after day, an increasing interest from both the scientific
and the industrial world. The need of a comprehensive tool
which can guide designers through the whole implementa-
tion process is becoming stronger. In this paper the authors
introduce a new design framework which amends this lack.
In particular the paper describes the entire low level design
flow onto which the framework is based.

1. INTRODUCTION

Nowadays, the most commonly used reconfigurable de-
vices are Field Programmable Gate Arrays (FPGAs), em-
ployed both as a component of more complex systems (play-
ing the role of a co-processor), and as System-on-Program-
mable-Chip (SoPC), integrating all system components. The
possibility of hardware reconfiguration has to be added to
the design flow as a new relevant degree of freedom. This
enables the designer to create systems that autonomously
modify their functionalities according to varying require-
ments. To guarantee such flexibility, the design of embedded
systems has rapidly changed during the last decade. Hence,
the literature on FPGA-based dynamically reconfigurable
systems has grown considerably, introducing the concept of
Virtual Hardware. The idea is to map an application re-
quiring more resources than the FPGA offers — similar to
the concept of Virtual Memory in software architectures. In
this scenario the application is divided into tasks that do
not need to operate concurrently. Each task is implemented
as a distinct configuration which can be downloaded onto
the FPGA on request at run-time. This approach is termed
Run-Time Reconfiguration (RTR) or Dynamic Reconfigura-
tion [1].

Although there are several techniques to exploit partial
reconfiguration (e.g. [2]), there are only a few approaches
for frameworks and tools (e.g. [3-5]) to design dynamically
reconfigurable SoPC (e.g. [6-8]). Examples of such frame-
works are the operating systems for reconfigurable embed-
ded platforms which have been analyzed in [9]. In [10] au-
thors have presented a run-time system for dynamical on-
demand reconfiguration. Several research groups, [2,11-16]
have built reconfigurable computing engines to obtain high
application performance at low cost by specializing the com-
puting engine to the computation task; some preliminary
results can be found in the literature, [13,17-19], but no

general framework and no publicly available tools are, at
the best of our knowledge, available.

The novelty introduced by the proposed work are summa-
rized below:

e in the definition of a complete methodology to im-
plement self reconfigurable embedded systems, taking
into consideration both the HW and the SW side of
the final architecture;

e the design of a complete framework, able to support
different devices (i.e. [20,21]) and reconfiguration tech-
niques ( [3,4]) and kind of reconfiguration (i.e. internal
or external), that allows a simple implementation of an
FPGA system specification, exploiting the capabilities
of partial dynamic reconfiguration;

e the proposed framework represents a first attempt to
define a flexible design flow that can be used to design
systems for different architectural solutions [22,23];

This work is organized as follows: Section 2 describes
the state-of-the-art dynamic reconfigurable systems design
flows. Section 3 introduces the realized framework. Section
4 and 5 illustrate the design flow upon which is founded
the framework. Section 6 exposes the experimental results
achieved by applying the flow. Section 7 reports the authors
conclusions.

2. DYNAMIC RECONFIGURABLE
SYSTEMS DESIGN FLOWS

To develop a configurable or a reconfigurable system it is
possible to build an ad-hoc solution or to follow a generalized
design flow. The first choice implies a considerable invest-
ment in terms of both time and efforts requested to build a
specific and optimized solution for the given problem, while
the second one allows exploiting the re-use of knowledge,
cores and software to reach more rapidly a good solution
to the same problem. Section 2.1 describes the former ap-
proach presenting an overview of the state of art of all the
design techniques that can be considered as ad-hoc solution
or as basic flow, while Section 2.2 proposes a bird’s eye view
on the complete design flows that have been implemented
over the last years to design reconfigurable systems.



2.1 Basic Flows

From a general point of view, as described in [3], par-
tial reconfiguration can be performed following two differ-
ent approaches: module-based or difference-based. The
module-based approach is characterized by the division of
reprogrammable devices in a certain number of portions,
called reconfigurable slot. In this scenario it is possible to
reconfigure one or more slots with a hardware component
called module, which is able to perform a specific function-
ality. Obviously, the modules contained in slots that are
not involved in the reconfiguration task do not have to stop
during the reconfiguration process. The difference-based ap-
proach, instead, does not require slots and modules defini-
tion, but it is suitable only when two distinct configura-
tions do not differ enough. The most general design ap-
proach for dynamically reconfigurable embedded systems,
described in [24], is the modular-based design. This ap-
proach is strongly connected to the module-based reconfigu-
ration approach and it is based on the idea of a design imple-
mented considering the system specification as composed of
a set of several independent modules (called IP-Cores, Intel-
lectual Property-Cores) that can be separately synthesized
and then assembled to produce the desired system.

Nowadays, a novel design flow based on the module-based
approach has been introduced: the Early Access Partial
Reconfiguration (EAPR) [4] . This approach extends the
previous one, introducing three new features:

e Signals belonging to the base design can cross partially
reconfigurable region without employing bus-macros;

e Reconfigurable rectangular regions can assume an ar-
bitrary height. Unfortunately this feature can not be
exploited by devices ! which do not support 2D recon-
figuration

e Virtex-4 [25] devices are now supported.

However, EAPR does not represent a revolution in the
reconfigurable system world. It relaxes design constraints
but at the same time it increases routing complexity and,
moreover, it loses the advantages achieved through realloca-
tion [26,27].

2.2 Generic Flows

In [23], authors proposed a design flow, named Caronte,
based on the module-based approach, able to support Vir-
tex, VirtexII and VirtexIIPro Xilinx devices [21]. The flow
was mainly composed of the three phases:

e HW-SSP (Hardware Static System Photo) Phase: ev-
ery possible configuration assumed by the FPGAs, is
computed. From this point of view each state can be
considered as a global representation of the whole sys-
tem. The only input of this phase is a partitioned
system specification.

e Design Phase: all the information needed to compute
the reconfiguration bitstreams are collected. These
bitstreams will be later used to physically implement
the embedded reconfiguration of the FPGA. Aim of
this phase is to identify the structure of each reconfig-
urable block and to solve all the placement and com-
munication problems.

Virtex, VirtexII and VirtexITPro Xilinx FPGAs [21]

e Bitstream Creation Phase: the output of this phase
consists of a set of bitstreams ready to be loaded on
the FPGA and able to configure the reprogrammable
device with the corresponding states, defined in the
previous phases.

The RECONF2 project [28] aim is to allow implementa-
tion of adaptive system architectures by developing a com-
plete design environment to exploit the benefits of dynamic
reconfigurable FPGAs. A set of tools and associated metho-
dologies have been developed to accomplish the following
tasks: automatic or manual partitioning of a conventional
design; specification of the dynamic constraints; verification
of the dynamic implementation through dynamic simula-
tions in all steps of the design flow; automatic generation of
the configuration controller core for VHDL or C implementa-
tion; dynamic floorplanning management and guidelines for
modular back-end implementation. The steps that charac-
terize this approach are the partitioning of the design code,
the verification of the dynamic behavior and the generation
of the configuration controller. The main limitation of the
RECONF2 solution is that it does not provide the possi-
bility of integrating the system with both a hardware and
a software part, since both the partitioned application and
the reconfiguration controller are implemented in hardware.

The works proposed in [29-31] are examples of modular
approaches to the reconfiguration exploiting Xilinx module-
based [3] technique. The flow proposed in [29] is too human-
based, it requires continuous interaction with the designer,
who must also be an expertise in partial reconfigurable de-
sign techniques. In [30] the reconfigurable computing plat-
form is intended to be PC-based. In such a context the
host PC will manage the transfer of bitstreams that recon-
figure the underlying reconfigurable architecture, RA. The
RA has been defined using a Xilinx FPGA which can be
accessed using common PC buses. The Proteus frame-
work does not substantially improve the design flow for par-
tial reconfigurable architecture. It can be useful to develop
applications that can take benefits from the proposed re-
configurable architecture and communication system, but
it presents all the drawbacks which characterized the Xil-
inx standard modular-based flow. The PaDReH frame-
work [31] aims at designing dynamically and partially re-
configurable systems based on single FPGAs. The flow is
composed by three phases, but from available publications
it can be inferred that only the last one has been imple-
mented. The main contribution of this work can be found
in the definition of a hardware core used to manage the re-
configuration.

In [5] two different techniques for implementing modu-
lar partial reconfiguration using Xilinx Virtex FPGAs are
proposed and compared. The first method is the standard
Xilinx flow [3]. The second technique has removed the mono-
dimensional constraints and it can be considered as the an-
cestor of the EAPR [4] approach. This method, called Merge
Dynamic Reconfiguration, is based on a bitstream merg-
ing process and reserved routing. Due to the reserved rout-
ing, it is possible to have statically routed signal to pass
through a reconfigurable area since the static and the re-
configurable modules are placed and routed independently
it is possible to reserve already used routing resources from
the static core to prevent the reconfigurable module to use
the same resources. In this context the separation between



the design of the static component and the reconfigurable
ones is clearly stated but the drawback is the reduction in
the freedom of the router. When partial reconfiguration bit-
stream are downloaded on the FPGA, the Merge Dynamic
Reconfiguration approach does not write it directly to the
reconfiguration memory but it reads back the current config-
uration from the device and it updates it with the data from
the partial bitstream in a frame-by-frame manner, minimiz-
ing the amount of memory requested to store the bitstream.
As a result it is possible to overlap two or more modules,
allowing them to be shaped and positioned arbitrarily but
the drawback is a dramatic increase of the reconfiguration
time.

3. THE PROPOSED METHODOLOGY

The idea behind the proposed methodology is based on the
assumption that it is desirable to implement a flow that can
output a set of configuration bitstreams used to configure
and, if necessary, partially reconfigure a standard FPGA
to realize the desired system. One of the main strengths
of the proposed methodology is its low-level architectural
independence. The software side of the desired solution can
be developed either as a standalone application or with the
support of an OS such as Linux, enhanced with an additional
support for reconfigurable hardware modules [7].

An initial flow, described in [32], has been extended and
improved to define the framework. This complete framework
allows to easily implementing FPGA system specifications
using high-level front-ends such as Simulink and exploit-
ing the capabilities of dynamic partial reconfiguration. The
framework supports different devices as long as different re-
configuration techniques and different reconfiguration modes
(internal or external, mono-dimensional or bi-dimensional).
The design flow is composed by three phases: High Level
Reconfiguration (HLR), Validation (VAL) and Low
Level Reconfiguration (LLR). Aim of HLR is to analyze
the input specification in order to find a feasible represen-
tation that can be used to perform the HW/SW Codesign.
In the currently implemented framework, cores are identified
by extraction of isomorphic templates used to generate a set
of feasible covers of the original specification. Finally, the
computed covers are placed and scheduled onto the given
device. On the opposite, the goal of VAL is to drive the re-
finement cycle of the system design. Using the information
provided by this phase, it is possible to modify the decisions
taken in the first part of the flow to improve the develop-
ment process. Finally, the last step that has to be performed
is LLR, which goal is the definition of an automatic gener-
ation of the low-level implementation of the final solution
that has to be physically deployed on the target device and
that realizes the original specification.

3.1 The methodological flow

Aim of the flow presented in this work is to generate the
low-level implementation of the desired system in order to
make it possible to physically configure the target device
to realize the original specification. The flow is divided in
three, concurrent, parts: the hardware (HW) side, the re-
configurable (RHW) side and the software (SW) side. A
diagram showing the whole process is presented in Figure 1.

4. THE FLOW: HW AND RHW SIDES

The first steps that must be performed in the HW and
RHW sides are the HDL Core Design and the IP-Core Gen-
eration. The latter phase extends the cores description with
a communication infrastructure that makes it possible to
interface them with a bus-based communication channel.
After these steps, the static components of the system are
synthesized together to realize the static architecture, while
the reconfigurable components are handled separately as re-
configurable IP-Cores. In order to implement the correct
communication infrastructure between the static component
and the reconfigurable ones, the component placement con-
straints need to be known. Therefore, before the generation
of the HDL description of the overall architecture the place-
ment constraints phase must be executed.

4.1 System Description Phase

The first phase of the flow consists in the creation of all
the necessary files used to describe the reconfigurable sys-
tem. This phase accepts as input the VHDL descriptions
of the core logic used to implement the desired application
and the system description file containing the information
regarding the overall solution (i.e. the number of reconfig-
urable slots, the need of the runtime relocation support). It
is possible to identify four different set of files used to de-
scribe the corresponding four basic architecture components:
the reconfigurable side, the static side, the communication
infrastructure and the overall system architecture. The sys-
tem description phase has been organized into four different
subsequent steps: the IP-Core generation and the system
architecture generation, described below.

4.1.1 The IP-Core generation

Aim of this phase is to build complete IP-Cores from their
core logic. This task is automatically performed through a
tool [33] which performs three steps: registers mapping, ad-
dress spaces assignment and signals interfacing. The reg-
isters mapping step is needed because each core may have
different (number, type, size) set of signals, therefore this
phase creates the correct binding between the register de-
fined in the core logic and the one that have to be created
inside the new IP-Core. During the second step each reg-
ister, mapped to a standard signal, is assigned to a spe-
cific address, allowing addressing a specific register through
the address signals. In the last step target bus signals are
mapped to registers. After the execution of this sequence of
steps, the IP-Core is ready to be bound to the target bus
and has a proper interface. Experimental results reported in
Section 6 show that interface overhead is acceptable, espe-
cially when the core size is relevant. The generated IP-Cores
will then be provided as input to the Reconfigurable Mod-
ules Creator or to the EDK System Creator tools, according
to their nature, static or reconfigurable, as defined in the
system characterization file.

4.1.2  System architecture generation

Once the IP-cores are ready, the system architecture gen-
eration can start. Since the basic structure of a self re-
configurable architecture is made of two different parts (a
static part and a reconfigurable one), there are two tools
in charge of creating these portions: the reconfigurable
modules creator accepts as input the reconfigurable IP-
cores and it provides as output the VHDL description of the
corresponding reconfigurable modules. The static system
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The next two stages of the System Description phase come
after the Design synthesis and Placement Constraints As-
signment phase, because they required placement informa-
tion regarding the layout of the overall architecture.

The communication infrastructure creator tool takes
as input the placement constraints identified by the design
synthesis and placement constraints assignment phase and
the information regarding the communication protocol that
has to be implemented and it provides as output the corre-
sponding macro-hardware used to implement the communi-
cation infrastructure.

Finally, the architecture generator creates the VHDL
description of the top architecture where the static compo-
nent, the communication infrastructure and the necessary
reconfigurable components are instantiated.

Experimental results have shown that the most time con-
suming stages are the static system creation stage and the
architecture generation stage. Table 1 reports the results of
a set of experiments where the static side of the architec-
ture has been designed using two different processors: the
PowerPC 405 and the Xilinx Microblaze. The first column
reports the main characteristics of the static part of archi-
tecture under test. For example VP7MBI1 means that the
target FPGA chosen to implement the final solution is the
Xilinx Virtex II Pro 7 (VP7) and that the processor instan-
tiated in the static side was a Xilinx Microblaze. Suffixes 1
and 2 characterize different static architectures, where dif-
ferent means that they have been defined using different sets
of IP-Cores.

Table 1: Static Part Time Requirements

Parsing Static Top
(ms) | % | (ms) | % | (ms) | %
VPTMB1 13981 | 44 | 13666 | 43 | 3783 | 12
VP7MB2 16489 | 41 | 16490 | 41 | 6776 | 17
VP7PPC1 21339 | 47 | 18989 | 42 | 4964 | 11
VP7PPC2 | 22262 | 41 | 22901 | 43 | 8476 | 16
VP20PPC1 | 15413 | 42 | 16533 | 45 | 4841 | 13
VP20PPC2 | 17292 | 42 | 16898 | 41 | 7135 | 17
V4MB1 11631 | 42 | 11915 | 43 | 3937 | 14
V4MB2 13642 | 38 | 14755 | 42 | 6989 | 20

4.2 Design synthesis and Placement
Constraints Assignment Phase

Aim of this phase is the definition of the placement con-
straints such as the position of the reconfigurable slots or
the physical location of bus-macros.

4.2.1 Design Synthesis

This stage is used to synthesize each system module in
order to estimate the resources that will be required to define
the corresponding configuration code.

4.2.2 Floorplanning Reconfiguration Driven

This stage defines the area constraints for each configura-
tion code. Since to every configuration code are associated
the corresponding resource constraints computed during the
design synthesis phase, it is possible to identify a floorplan-
ning constraint that take into consideration both the re-

source requirements and the constraints introduced by the
reconfigurable scenario (i.e. working with a Xilinx device, a
width constraint multiple of 4 slices [3,4]). Hence the floor-
planning reconfiguration driven stage provide as output an
area constraint aware of all the constraints introduced by
the reconfiguration scenario.

4.2.3 Placement Constraints

Aim of this stage is the identification of the placement con-
straints that will be used to implement each configuration
code. The floorplanning reconfiguration driven stage pro-
vide a set of feasible area constraints, but the problem that
still needs to be solved is the identification of the placement
constraints taking into consideration the fact that those con-
figuration codes are not configured as single core on the
reconfigurable device, but they have to share the reconfig-
urable resources with other configuration codes. The UCF
Builder and Analyzer (BUBA) tool takes as input the start-
ing area solutions computed by the previous stage, a static
scheduling of the application and the information regarding
the reconfigurable device that has to be used to implement
the desired design. All this information is provided in the
system characterization file. Due to these parameters BUBA
assigns, using a greedy algorithm, the placement constraints
to each module trying to minimize the number of reconfig-
urations [34]. This is possible due to the fact that a module
can be executed at different times and not only once. In such
a scenario there might be a placement solution able to keep
configured a configuration code on the reconfigurable device,
without affecting the quality of the schedule, without having
to reconfigure the same module twice or more just because
it is no longer available on the reconfigurable device. Once
the new placement constraints are defined these information
are stored into the system characterization file and into the
UCF file and provided respectively to the system architec-
ture generation stage in the System Description phase to
implement the correct communication infrastructure and to
the context creation stage in the System Generation phase.

4.3 System Generation Phase

The previous two phases produce all the necessary files
(i.e. HDL descriptions, UCF file, macro-HW definitions,
etc) describing the desired system. The last phase of the
flow is the System Generation phase. It can be used to
support both Xilinx EAPR [4] and Module-based [3] recon-
figurable architecture design flows. This phase is divided in
two different stages: the Context Creation and the Bit-
stream Generation.

4.3.1 Context Creation

The Context Creation phase is organized into three dif-
ferent stages: Static Side Implementation, Reconfigurable
Modules Implementation and Context Merging. The first
one accepts as input the HDL files® generated during the
system description phase and the placement information de-
fined via the design synthesis and placement constraints as-
signment phase. Aim of this stage is the physical imple-
mentation of the static side of the final architecture. The
placement information of this component will be provided
as input to the Context Merging phase of the final archi-
tecture. A second output, working with the EAPR flow, is
represented by the information of the static side components
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that are placed into the reconfigurable modules region (i.e.
routing, CLBs usage). The Reconfigurable Modules Imple-
mentation stage needs as input the placement information
for each module and the corresponding VHDL files defined
during the previous two phases. This stage defines the phys-
ical implementation of each reconfigurable component. It is
composed by three different steps: the NGDBuild, the map-
ping and the final place and route stage. The Reconfigurable
Modules Implementation stage needs to be executed for re-
configurable component. Finally, the Context Merging stage
produces as result the merging of the outputs produced by
the two previous stages.

4.3.2 Bitstream Generation

The last stage, Bitstream Generation, creates a complete
bitstream of the top architecture that configures the system
and a set of empty modules. Then for each module two par-
tial bitstreams have to be created: one is used to configure it
over an empty module and another one to restore the empty
configuration.

S. THE FLOW: SW SIDE

A dynamic reconfigurable architecture often needs soft-
ware integration to control the scheduling of the reconfig-
uration. This kind of tasks can be implemented either as
a stand-alone software application or through an Operating
System (OS) that provides reconfiguration mechanisms. In
the proposed methodology the latter method is chosen, since
it is more flexible and powerful. The first steps that must be
performed in the SW side are the development of a reconfig-
uration control application and the development of a set of
drivers to handle both the reconfigurable and the static com-
ponents of the system. All these software applications are
compiled for the processor of the target system. The com-
piled software is then integrated, in the Software Integration
phase, with the boot-loader, with the Linux OS and with the
Linux Reconfiguration Support (LRS). The LRS extends a
standard Linux OS by adding support for PLDs full and
partial dynamic reconfiguration. Once the bitstreams cre-
ated by the Bitstreams Generation phase are available, the
last step of the proposed flow can be performed. It is called
the Deployment Design phase, it generates the final solu-
tion, which is made by the initial configuration bitstream,
the partial bitstreams, the software part (boot-loader, OS,
Reconfiguration Support, drivers and controller) and the de-
ployment information that will be used to physically config-
ure the target device.

6. EXPERIMENTAL RESULTS

This section presents different examples to prove the ef-
fectiveness and the quality of the proposed methodology.
Tables are not exhaustive for conciseness reasons; they re-
port results concerning only the most interesting phases.

Table 2 presents some results relative to the tool used dur-
ing the IP-Core generation phase. The set of tests is com-
posed by several types of components, starting from simple
core like IrDA interface to more complex core such as Com-
plex ALU. For each test the table shows the resource needed
by the logic core and by the generated IP-core in terms of
4-input LUTs and slices. Also, the table shows the comple-
tion time for every test, which is almost constant and on the
average is of 0.065 seconds.

Table 2: IP-Core generator tool tests

IP-Core 4-input luts | Perc. | Occupied Slices | Perc. [ Time (s)
Core: Multl 30 0% 26 1%

IP-Core: Multl 172 2% 122 2% 0.049
Core: Mult2 64 1% 37 1%

IP-Core: Mult2 339 4% 205 4% 0.053
Core: IrDA 15 1% 11 1%

IP-Core: IrDA 146 1% 103 2% 0.045
Core: FIR 273 2% 153 3%

IP-Core: FIR 308 3% 173 3% 0.058
Core: AES128 4124 42% 2132 43%

IP-Core: AES128 4314 44% 2250 46% 0.075
Core: RGB2YCbCr 1028 10% 913 18%

IP-Core: RGB2YCbCr 848 9% 940 19% 0.063
Core: Complex ALU 1750 18% 950 19%

IP-Core: Complex ALU 2089 21% 1079 22% 0.071

To validate the subsequent phases of the flow, different
examples have been developed. Aim of those examples is to
prove that the proposed flow is not only platform indepen-
dent but it can be used to design different reconfigurable ar-
chitectures, adopting internal or external reconfiguration; it
is processor-independent (i.e., PowerPC or Microblaze) and
it can work with different reconfigurable constraints (i.e.,
the 1D for the Virtex and Spartan FPGAs and the 2D for
the Virtex4 devices).

The target device of the first two examples is a Virtex-11
Pro VP20 FPGA, integrated in an Avnet Evaluation Board;
the first example relies on a Microblaze soft-processor imple-
mented in the static part of the design. The second exam-
ple is based on the PPC 405 hard-processor embedded into
the FPGA. The target device of the last two examples is
a Virtex-4 FX12 FPGA mounted on a Xilinx Development
Board; as for the previous case, the two examples are based
respectively on a soft-core and on a hard-core. The number
of reconfigurable slots used for every example is four. Fur-
thermore, in all examples, the reconfigurable and the static
regions have been submitted to several tests in which their
size has been incrementally decreased, in order to achieve
different shapes for each one of them. The approach pro-
posed in this paper has been applied to automatically de-
velop several reconfigurable architectures. All these archi-
tectures have been successfully tested on the target devices.

The latency of the whole architecture mainly depends on
the hardware reconfiguration latency, which is directly pro-
portional to the size of the requested module. Several cores,
spanning from simple functional units to more complex ones
such as RGB converter, FIR (the last two have been used
as part of a complete edge detector system), have been im-
plemented as reconfigurable components. Their size span
from 113 slices for a simple squarer to 4314 slices for an
AES128 module. What determines the latency, however,
is the number of CLB columns that must be reconfigured.
This number is varied, during the tests from 1 column to 12
columns.

6.1 A complete application

In this section it is described a complete application typ-
ical of the Image Processing area. Several applications in
this domain are characterized by data intensive kernels that
involve a large number of repetitive operations on input im-
ages. These kernels can be implemented on PLDs, since
computational intensive tasks are mapped onto the recon-
figurable hardware. The application chosen to validate the
overall solution is the edge detection problem, computed on
sequential frames.



The edge detector used in these experiments is the Canny
edge detector, which is composed by four main blocks: image
smoothing (fa), gradient computation (fs), non-maximum
suppression (f.) and finally the hysteresis threshold (fq).

Input Y, Output

Figure 2: Canny edge detector execution model.

The model adopted is similar to the one proposed in [35].
The idea is to iterate the execution of each module a certain
number of times, and in order to obtain modules whose run-
ning time is comparable to the reconfiguration time of other
modules, thus hiding reconfiguration overhead, as shown in
Figure 2. The image smoothing (FIR) phase is nec-
essary to remove the noise from the image. The image
gradient, computed by applying the filter function with
a window-approach, is used to highlight regions with high
spatial derivatives. Next, the intensity value image and
the direction value image, are computed during the non-
maximum suppression stage. At this point it is obtained
an image with approximate edges detected, which are often
corrupted by the presence of false-edges. In order to delete
these non-edges the gradient array is now further reduced
by hysteresis.

The most computationally expensive parts of the system
are the image smoothing filter (FIR), the image gradient
and the hysteresis. These functions have been implemented
in VHDL and they have been plugged into the self recon-
figurable architecture. The resulting system is composed of
four modules. The distribution of the application functions
into these modules is presented in Table 3.

Table 3: Modules partitioning.

Tasks Application Functions Occupied Slices | Percentage
my Static Side, non-maximum suppression f. 2662 54
ma image smoothing (FIR) fa 245 4
ms gradient f, 2168 44
ma hysteresis fa 5343 108

Module my contains the static side, i.e., the PowerPC
core and all the interface infrastructures as well as the func-
tion f. (non-maximum suppression). The other three tasks
correspond to one IP-Core implemented with reconfigurable
hardware. The resource requirements of these IP-Cores are
shown in last two columns of Table 3. As a result, m; is ex-
tended to support both f. (non-maximum suppression) and
fa (hysteresis). This move does not incur in any additional
overhead for the realization of module m;. Module m; al-
ready contained one application function (f.). Therefore,
necessary computational resources (a PowerPC core) and
communication components to correctly interface the soft-
ware functions with the IP-Cores have already been created
and accounted for. The newly added application function fy
will also use this existing infrastructure. With this solution,
hardware reconfiguration has to be taken into account be-
cause the static portion of the architecture, mi, along with

the two IP-Cores, the FIR Filter, m2, and the image gra-
dient function, mgs, are not going to fit into the available
reconfigurable hardware resources. In order to have an effi-
cient implementation using partial dynamic reconfiguration,
enough data must be processed to justify the reconfiguration
between the FIR and image gradient cores (368ms).

This example has been proposed to present a complete
and real application that can be implemented using the flow
using a self dynamic reconfigurable architecture. Obviously
the same application can be implemented using a bigger
FPGA without needing any reconfiguration. Reconfigurable
SoCs are particularly powerful platforms for image and video
processing and other multimedia applications. These do-
mains provide essential services for many emerging embed-
ded systems i.e. Smart-Transportation and Biomedical ar-
chitecture. Motion detection, feature tracking, processing
on continuous streams are some applications to this end.

7. CONCLUSION

It has been demonstrated (see Section 6) that the pro-
posed design flow produces working examples of dynamic
reconfigurable embedded systems. The implemented system
functionalities range from simple counter or squarer to com-
plex operation such as edge detection. Every tool needed by
the flow has been realized and tested. However the authors
are currently working in order to improve the framework fur-
ther on, adding the support for a graphical tool like Simulink
and for devices produced by other industries.
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