University of Illinois at Chicago - Politecnico di Milano
CS Master Program
CS569 - High Performance Processors and Systems course

Student Project:
System Dependency Graphs
in Earendil

June 22, 2004
student: Matteo Giani - PdM matricola 667487
instructor : prof. Donatella Sciuto
tutor : ing. Marco D. Santambrogio

ﬂ = SDGs in Earendil
' LIST OF FIGURES

Contents
1 Introduction 1
1.1 Earendil : overall view 1
1.2 Astinus. 1
2 Definitions 4
2.1 Program Dependency Graph 4
2.1.1 Theoriginal PDG 4
2.1.2 Fine-Grained Program Dependency Graph 8
2.2 System Dependency Graph 11
3 Algorithms involved SDG construction 13
3.1 The original approach to PDG construction 13
3.1.1 Postdominance 14
3.1.2 Control Dependency Computation. 17
3.2 A different approach starting from the AST 22

List of Figures

1 Earendil flow L 2
2 Example of PDG for a simple code fragment 7
3 Fine-Grained PDG representation of an assignment statement 9
4 Fine-Grained PDG representation of the code fragment in fig-

UTE 2 . . . o e 10
5 Summary of the representation of a procedure call in a SDG . 12
6 Overview of a possible workflow for building a PDG 14
7 Example: Control Flow Graph with ”start” and "end” nodes . 18
8 Postdominator tree for the CFG of figure 7 18

= SDGs in Earendil
' 1 INTRODUCTION

1 Introduction

This project focuses on the analysis of a language-independent program rep-
resentation, the System Dependency Graph (SDG), and of some of the algo-
rithms involved in its construction, especially those regarding computation
of control dependencies. This kind of intermediate representation is used
by Astinus, one of the modules of the Farendil methodology for dynamic
reconfiguration, as presented in [1].

1.1 Earendil : overall view

As is shown in figure 1, the Earendil methodology is composed of different
modules which work in series: the output of one stage is the input to the
next one.

The Earendil methodology starts by taking as input a SystemC speci-
fication, which is first analyzed in order to partition it into modules and
parallelize the execution as much as possible. This step is carried out by the
first stage of the methodology, Astinus. The original SystemC code has now
been partitioned into modules, and the output of Astinus is an intermediate
representation called Thread Dependency Graph. The following stage in the
Earendil methodology is Salomone, which starts from the Thread Depen-
dency Graph in order to solve the static scheduling problem for the modules
identified by Astinus. Once Salomone has completed its job, it produces
SystemC modules specifying the behavior for the overall system that, once
compiled to VHDL and synthesized, will be loaded into the Caronte architec-
ture, which implements the actual Dynamic Reconfiguration.

1.2 Astinus

As stated above, the Astinus module starts from the original code and pro-
duces as output a Thread Dependency Graph. It is internally further struc-
tured in different steps:

e parse the original SystemC code to obtain the Abstract Syntax Tree
(AST)

e obtain a System Dependency Graph (SDG) in order to expose paral-
lelizable parts of the code

e produce a Thread Dependency Graph (TDG) by merging parallelizable
nodes of the SDG into basic blocks.

ﬂ: LAE SDGs in Earendil

1 INTRODUCTION

SystemC code

Analysis

Astinus:
* build AST
* detect code ambiguity
* detect parallelism
* partition code into modules

Salomone:
* find a static scheduling solution for the modules
* map each module onto the FPGA
* produce a SystemC description
* implement the dynamic scheduler data structure

 d

Synthesis
Caronte: .
* Dynamic Scheduler Bmdo;hg tr:\;c;n':'é/pes Output:
* Controller y X Dynamic Reconfiguration
. Do Reconfiguration i
Peripherals > e

Figure 1: Earendil flow

e SDGs in Earendil
o 1 INTRODUCTION

The SDG representation was chosen ([1]) because it stresses all, and only,
the essential dependencies between statements in the source. Most impor-
tantly, while it does not explicitly contain control flow information, the way
control dependencies are summarized in a SDG is very concise and exposes
parallelizable blocks quite clearly.

This project went through the following phases:

e analysis of literature in order to obtain a clear definition of the structure
of a SDG

e formalisation of some of the algorithms involved in the construction of
a SDG

Moreover, an algorithm for computing the postdominator tree starting
from a Control-Flow Graph (see 3.1.1) was implemented in C++ using the
boost graph library ([2]).

ﬂ = SDGs in Earendil
‘ 2 DEFINITIONS

2 Definitions

This section aims at showing the features of a SDG. Its contents illustrate
the results of the work carried out in collaboration with Marco Magnone,
who is also exploiting the SDG representation for his Laurea thesis work at
Politecnico. One first observation is that a System Dependency Graph (SDG)
represents a system made of different procedures. The basic structure from
which a SDG is built is a Program (or Procedure) Dependency Graph, which
is the representation of a single procedure. Let us then start by analysing
this latter kind of representation.

2.1 Program Dependency Graph

It is worth noting that many different variations over the original definition
of PDG have been developed, especially considering that several different
uses have been found for such a representation. Take as examples:

e applications of the PDG to the slicing problem [3, 4]

e extensions of the PDG for supporting object-oriented programming
languages [5]

e uses of the PDG to detect similar code [6]

e the representation of the original control flow of the program in addition
to the usual features of the PDG [7]

Since all these different interpretations of the PDG introduce ad-hoc ex-
tensions and modifications of its structure it was decided, in order to stick to
a clear and commonly used definition, to first adopt the original definition
found in [8].

2.1.1 The original PDG

The PDG [8] represents a program (or, better, a procedure) as a directed
graph in which the following kinds of nodes are present:

e statement nodes, which represent single executable statements in the
code;

e predicate nodes, which represent control flow conditions, such as loop
conditions or if-statement conditions;

= SDGs in Earendil
‘ 2 DEFINITIONS

e an entry node, which represents the external condition that causes the
procedure to start running. As we will see, when taking into account
multiprocedure systems, this node will be uses to connect procedures
by means of call edges;

e region nodes, used to “summarize” common control dependency pre-
decessors between statements. More information on this is given in
3.1.2.

Before considering the edges that we can find in a PDG, we have to prop-
erly understand the meaning of control dependency, since this is the most
novel feature of a PDG. Let us consider at first one intuitive definition: one
node B is control dependent on A if A can control whether or not B will be
executed. As an example, we will have control dependencies between nodes
representing statements in the “if” branch of a conditional expression and
the node representing the predicate that controls the “if” construct. A for-
mal definition [8] is as follows:

A node B is control dependent on A if, and only if,
e A is not post-dominated by B in the CFG, and

e there exists a directed path from A to B in the CFG such that every
node other than A on the path is postdominated by B.

For a definition of postdominance see 3.1.1.

The following kinds of edges can be found in a PDG:

e control dependency edges: they exist between nodes that are con-
trol dependent on one another according to the definition above, and
between region nodes inserted afterwards (3.1.2). They are further
characterizable as follows:

— labeled control dependency edges : they are outgoing from a pred-
icate node, and the label (T /F) allows us to distinguish which one
is in effect depending on the result of the predicate evaluation

— unlabeled control dependency edges : they typically originate
when representing control dependencies in which the origin is a
region node.

= SDGs in Earendil
‘ 2 DEFINITIONS

e data dependency edges: they are the representation in a PDG of the
corresponding edges in a “traditional” Data Dependency Graph, and
can be further subdivided into four main types:

data-flow dependencies (or true dependencies): they are another
way to see RAW dependencies: they exist between a definition of a
data item and a use of it if no other definition occurs in the middle

output dependencies: they represent the same concept as WAW de-
pendencies, so they exist between two consecutive definitions of
the same data item, with no intervening definition between the
two

anti-dependencies : anoter way of calling WAR dependencies, they
exist between one use of a variable and the first subsequent defi-
nition of the same data item.

def-order dependencies: this last kind of data dependency is a
specialisation of the output dependency edge, that exists between
different definitions of the same data item that could both reach
one use (see [9] for an example of its rationale).

Moreover, a distinction must be made between data dependencies that
arise from loop constructs, which are called loop-carried data dependencies,
from the ones that do not, which are called loop independent, in order to
correctly distinguish situations like these two [9]:

- FRAGMENT 1

x:=0

while P do

yi=X
if Q
od

then x:=1 fi

- FRAGMENT 2

x:=0

while P do

if Q
yi=X
od

then x:=1 fi

Without treating loop-carried dependencies in a separate way, the two
code fragments would have the exact same PDG representation.

= SDGs in Earendil
‘ 2 DEFINITIONS

ENTRY: main()

{
S1: a=0;
S2: if(a>4)
{
S21: c=0;
}
else
{
S22: c=4;
}

} G G2

Figure 2: Example of PDG for a simple code fragment

To summarize, it was decided that, in our example graphs, data depen-
dencies will be represented as edges labeled with a triple item, loop, type (see
e.g. figure 2), in which:

e item stands for the name of the data item which the dependency takes
into account,

e Joop is either 1c, for loop-carried, or 1i, for loop-independent depen-
dencies,

e type is

— “=” for true data dependencies,
— “do” for def-order dependencies,
— “o” for output dependencies,
— “a” for anti-dependencies.
Figure 2 also shows our graphical convention for representing dependency
edges: control dependency edges are drawn in blue, while data dependency

edges are drawn in red. This convention will be adopted throughout this
section.

= SDGs in Earendil
‘ 2 DEFINITIONS

2.1.2 Fine-Grained Program Dependency Graph

In the “traditional” PDG defined above each statement in the program maps
to a single node. There might be situations in which a finer degree of detail
is desirable. The Fine-Grained PDG allows us to achieve a more detailed
representation by introducing more specialisation in the kind of nodes used.
The structure obtained is closer in terms of detail to that of an Abstract
Syntax Tree, and each node is now labeled using different fields:

e a label that relates each node to its corresponding statement in the
original source

e a class/operator field, which specifies the kind of node we are dealing
with. As we will see in some of the examples, common values are:

— entry, if the node is the entry node of a procedure, with a meaning
like the one exposed for “traditional” PDGs

— binary, if the node is a binary expression, i.e. one with a left-hand
side and a right-hand side, such as a comparison

— assign, if the node represents an assignment operation
— constant, if the node expresses a constant value
— statement in order to represent uses of data items

— reference in order to represent definitions of data items

e a value field, for some of the node types it is used to specify the actual
contents of the node, such as the numerical value for constant nodes,
the actual operator for binary expressions or the name of the data item
for reference nodes.

Region nodes are kept exactly the same, since they do not represent any
actual program feature but are introduced in order to better represent control
dependencies.

The Fine-Grained representation must also introduce new kinds of edges
in order to take into account intra-statement dependencies, i.e. the ones that
occur between nodes belonging to a single statement in the program. There
are substantially three new kinds of edges, which will be represented in our

examples as dashed lines to distinguish them from the ones defined in the
original PDG:

¢ immediate control dependency edges: they exist to represent the
need of evaluating their target node before executing the operation

= SDGs in Earendil
‘ 2 DEFINITIONS

assign
7 B
// Ty My
/ A
¥ 11
Sa Sh
binary reference
+ a
4
/ / Y
AN
L] AWl
Sc Sd
statement statement
b a

Figure 3: Fine-Grained PDG representation of an assignment statement

represented by the source node. They will be present, e.g., between the
binary node representing a comparison and the nodes representing its
right and left-hand side expressions, which will need to be evaluated
before computing the outcome of a comparison;

e value dependency edges are a new kind of data dependency edge
that takes into account the data flow occurring inside a given statement:
they mean that a value computed in the start node is needed to compute
the result of the target node. They will be represented as dashed red
lines labeled “v”;

¢ reference dependency edges express a concept similar to the one of
value dependency edges, but they are differentiated in order to repre-
sent the fact that the value computed by the start node is going to be
saved in a data item represented by the target node. Their target will
typically be a reference node. They will be represented as dashed red
lines labeled “1”.

For an example of some of these features, see figure 3, which represents
a single assignment statement, a = b + c. In a “traditional” PDG it would
have been represented by a single node. Nodes have been labeled appending
letters in alphabetical order to nodes generating from one single statement,
in this case S followed by lowercase letters.

Moreover, the same example seen in figure 2 can be seen represented in
a Fine-Grained PDG in figure 2.1.2. For more examples of different control
structures represented as PDGs, the reader can refer to the related chapter
in Marco Magnone’s thesis (work in progress at the time of writing).

9

SDGs in Earendil

2 DEFINITIONS

EO
entry

/

assign
A -
n AT
7, |]

V4

vy

Sla

Slb

constant

reference

0

a

li,-

\

S2a

Statement

a

\"

[
II
Y

V.

S2

binary

>

7 4
V!

| &

N

S2b

S21

S22

constant

assign

assign

4 /]

A AT

| 1|
N N |

/
V.

Y
v !

|

N

N\

\r

S2la S21b

S22a

S22b

constant reference

constant

reference

0 c

4

C

Figure 4: Fine-Grained PDG representation of the code fragment in figure 2

10

= SDGs in Earendil
‘ 2 DEFINITIONS

2.2 System Dependency Graph

PDGs represent single procedures. In order to represent complex systems,
we must consider multiple PDGs and add information about procedure calls.
The System Dependency Graph (SDG) representation allows us to represent
this kind of program feature by introducing additional node and edge spe-
cialisations. Parameter passing is modeled upon passing by reference, i.e.
both input and output parameters are represented. It is then necessary to
create, for each procedure, two sets of nodes:

e formal-in nodes that represent formal parameters used as input values,
and

e formal-out nodes that represent formal parameters that are poten-
tially modified by the procedure.

Every callsite for the procedure (i.e. statement from which the procedure
is called) will have to match the formal parameter nodes with a set of actual
parameter nodes, called actual-in and actual-out. A further refinement of
the System Dependency Graphs is in [3] that allows to represent potentially
non-returning procedure calls.

The SDG also has specialised edges that allow us to connect callsites and
procedure entry points, both from control dependency and data flow points
of view:

e call edges which connect call nodes to entry nodes of the called pro-
cedure. They represent control dependencies that arise due to the call
operation, we will label such edges with a “c”;

e parameter passing edges, that take into account the data flow de-
pendencies that arise due to parameter passing. They are subdivided
into:

— parameter-in edges, that connect actual-in nodes to the cor-
responding formal-in nodes in the procedure’s PDG, labeled as
“p-IN”, and

— parameter-out edges, that connect formal-out nodes to the cor-
responding actual-out nodes in the caller’s PDG, labeled as “p-
ouT”.

The idea of how different PDGs are interconnected in order to take into
account procedure call is presented in figure 5. It is worth noting that in
the figure the procedure body is left represented as a generic single node,

11

. (1)) SDGs in Earendil

2 DEFINITIONS

actual-out
vertices

Call
statement

actual-in
vertices

Caller

formal-out
vertices

procedure
body

formal-in
vertices

Callee

Figure 5: Summary of the representation of a procedure call in a SDG

and this makes it a bit unclear how the code of the procedure is connected
to output and input parameters. The basic idea is that parameters can be
treated as variables, with input parameters being defined at the beginning of
the procedure and output parameters having a use of the variable at the end
of the procedure body. This way, data operations inside the procedure can
be related to input and output parameters just like it happens for any other
variable. The parameter in and out edges also expose data dependencies that
could arise between actual parameters because of the procedure’s behaviour.

12

ﬂ AE SDGs in Earendil
‘ 3 ALGORITHMS INVOLVED SDG CONSTRUCTION

3 Algorithms involved SDG construction

As has been outlined, a SDG is a collection of PDGs connected by means
of call edges and parameter passing edges. Thus, we can build a SDG in-
crementally by first constructing PDGs for the single procedures involved in
our system, completing them with parameter passing nodes, and then linking
them together with call and parameter passing edges. Moreover, if needed, a
PDG could be turned into a fine-grained PDG by expanding each node into
the corresponding set of fine-grained vertices, properly linked by the needed
intra-statement dependency edges.

The first step in building a System Dependency Graph is to produce
Program Dependency Graphs for the individual procedures involved in the
overall system. Each Program (or Procedure) Dependency Graph contains,
as has already been outlined, information about:

e data dependencies, and
e control dependencies.

The entire PDG can be seen as the union of two different subgraphs, each
representing one kind of dependency. The subgraph representing data de-
pendencies is actually a ”traditional” Data Dependency Graph (with some
additional detail, as exposed in 2.1.1). The problem of building the Data
Dependency Graph is actually a recurrent problem in program analysis, and
was not a central subject of this project. The rest of this section will, then,
focus on construction of the Control Dependency Subgraph.

Most of the work that has been done around PDG construction revolves
around concepts that were already present in the original definition [8]. An
algorithm for computation of control dependencies was also outlined therein,
and since it is, in several aspects, directly based on the definition it seemed
like a good starting point in order to get a thorough understanding of the
concepts involved in PDG construction.

3.1 The original approach to PDG construction

The paper in which Program Dependency Graphs were originally defined
[8] contained the description of an algorithm for computing exact control
dependencies, which took as input the Control-Flow Graph of the program.
From there, the first step is to compute the postdominance relation between
nodes in the Control-Flow Graph, in form of the postdominator tree. This
is why postdominance is an important subject for the analysis of Program
Dependency Graphs.

13

AE SDGs in Earendil
‘ 3 ALGORITHMS INVOLVED SDG CONSTRUCTION

Control Dependencies
Build the Post- Build the
Dominator Tree Control-
Algorithms: l»| Dependence
Input: * Lengauer-Tarjan Subgraph
’ "(;erahve,()(%g' Algorithm: ™~
ooper’ .
Control-Flow / i Ferrante etal. \ Merge DDG
Graph and CDS

(with definition

and use .
information) \ Data Dependencies / Output: PDG

A Byild the Data- |

Dependence
Graph (DDG)

Already implemented in
a recent patch to gee

Figure 6: Overview of a possible workflow for building a PDG

Once the postdominator tree had been built, the algorithm used informa-
tion both from this intermediate graph and from the original Control-Flow
Graph in order to first compute exact control dependencies, and then sim-
plify their representation by introducing Region Nodes in the graph. The
rationale of region nodes is that every region node represents a set of control
dependence predecessors, so that two statements, if they share a subset of
control dependence predecessors, are made dependent on the same region
node instead of having separate edges coming from all the predecessors in
the subset.

This is better understood by looking at the pseudocode that summarizes
the steps carried out by the algorithm (3.1.2). Let us now take into consid-
eration the problem of computing the postdominator tree, which as has been
stressed is the first step towards computing control dependencies.

3.1.1 Postdominance

Postdominance is a relation between nodes in a directed graph with one
distinguished (end) node. Let us start from the definition of dominance,
which is basically the opposite of postdominance, and is the relation that
was originally defined.

Consider a directed graph with a distinguished node, call it start. A
node V in the graph is dominated by another node W if, and only if, every

14

AE SDGs in Earendil
‘ 3 ALGORITHMS INVOLVED SDG CONSTRUCTION

directed path from start to V contains W.

In other words, a node is postdominated by another one if every possible
path we have to reach it from the start node passes through the latter node.

Postdominance is, dually, the relation that is defined as follows: in a
directed graph with a distinguished node end, a node V is postdominated by
another node W if, and only if, every directed path from V to end contains W.

This last definition appears clearly related to the definition of control
dependency in a PDG: if all possible control paths that can originate from a
single statement V contain another statement W then there can be no control
dependency from V to W, since V cannot affect whether or not W will be
executed. This is also why the algorithm to compute control dependencies
initially considers the postdominance relation in order to discard such pairs
of nodes in the CFG.

The postdominance relation, as can be shown, is an irreflexive, asymmet-
ric, transitive relation. As such, it is most naturally represented as a tree, the
postdominator tree, which is the representation of this relation that is used
by the algorithm shown in 3.1.2. It is worth noting that most of the algo-
rithms that have been defined to compute the relation produce directly the
tree representation, from which of course the transitive closure is extractable
trivially in linear time.

The problem of (post) dominance is actually quite a common one in
many approaches to program analysis and optimization. A good summary
of the various algorithms proposed over time to solve it can be found in [10].
The early algorithms adopted an “iterative” approach, achieving (roughly
speaking) quadratic time complexities in the number of edges in the CFG.
An important turning point in the development of algorithms for solving such
a problem is [11]: it significantly lowered the time bound of the algorithm,
achieving near-linear complexity. Moreover, many of the later algorithms
were based on modifications of the one proposed in [11].

However these algorithms, while displaying better asymptotical time com-
plexity, are significantly more complex in terms of implementation effort and
more importantly, as outlined in [10], they need some significant time to
setup their data structures, so that this overhead does not justify the adop-
tion of the more refined algorithms with respect to the simpler iterative ones
in most practical cases.

Therefore, it was chosen to implement, as a starting point, the algorithm
proposed in [10], which is basically an iterative algorithm adopting some re-
finements in the data structures used. At a later stage it could be substituted
with a more efficient one, like the one in [11]. A pseudocode representation
of the algorithm follows:

15

ﬂ AE SDGs in Earendil
‘ 3 ALGORITHMS INVOLVED SDG CONSTRUCTION

BEGIN dominators_cooper
(do a depth-first search on the CFG starting from the start node)
(number the nodes in reverse postorder)

FOREACH(node b in the CFG)

{
doms [b] := undefined
}
doms [start_node] := start_node;

Changed = true;

WHILE(Changed)
{
Changed = false;
FOREACH(node b in the CFG, in reverse postorder, except start_node)

{
// pick one, the choice should not matter
new_idom := (first processed predecessor of b in the CFG)
FOREACH(predecessor p of b in the cfg other than the one chosen above)
{
IF doms[p] != undefined
THEN
{
new_idom := intersect(p,new_idom)
by
}
IF doms[b] != new_idom
THEN
{
doms[b] := new_idom
Changed := true
}
}

}

END dominators_cooper

FUNCTION intersect(bl,b2) RETURNS node
BEGIN
fingerl := bl

16

ﬂ AE SDGs in Earendil
‘ 3 ALGORITHMS INVOLVED SDG CONSTRUCTION

finger2 := b2
WHILE(fingerl != finger2)

{
WHILE(fingerl < finger2)
fingerl := doms[finger1]
WHILE(finger2 < fingerl)
finger2 := doms[finger?2]
}

return fingerl
END intersect

The algorithm computes the dominance relation by means of the immedi-
ate dominators for each node. The immediate dominator of a node is actually
its parent in the dominance tree. Of course, the algorithm can be trivially
adapted to computing postdominance instead of dominance by just feeding it
the reversed control-flow graph. As can be easily seen from the pseudocode
above, the algorithm iterates to a fixed point. Its temporal complexity is
O(N + E * D) per each iteration, where N is the number of nodes in the
CFG, E the number of edges, and D the cardinality of the biggest dominators
set. In [10] it is shown that the algorithm terminates in d(G) + 3 iterations,
where d(G) is the loop connectedness of the CFG. Loop connectedness is a
structural property of a directed graph G and a depth-first spanning tree
(DFST) of G, such as the one constructed as a first step in the above out-
lined algorithm. The DFST partitions the edges in G into three classes:
edges used in the DFST, called tree edges or forward edges; edges that run
from a node back to an ancestor in the DFST, called back edges; and edges
that run between nodes in disjoint subtrees of the DFST, called cross edges.
With this partitioning, d(G) is the maximum number of back edges that can
occur on any acyclic path through G. In practical cases, [10] suggests that
d(G) is bounded to low values, typically lower than 3.

Figures 7 and 8 show a Control-Flow Graph (taken from [8]) and its
corresponding postdominator tree, computed by the implementation of the
postdominance algorithm that was developed for this project.

3.1.2 Control Dependency Computation

Now that we have outlined the problem of postdominance and exposed an
algorithm to solve it, we can look into the actual algorithm for computation of
control dependencies presented in [8]. The algorithm consists of two phases:

e computation of exact control dependencies,

17

e SDGs in Earendil
o 3 ALGORITHMS INVOLVED SDG CONSTRUCTION

NI Yoo o a
e

Figure 7: Example: Control Flow Graph with "start” and ”"end” nodes

Figure 8: Postdominator tree for the CFG of figure 7

18

ﬂ AE SDGs in Earendil
‘ 3 ALGORITHMS INVOLVED SDG CONSTRUCTION

e insertion of region nodes in order to factorize common control depen-
dencies between statements.

Both phases rely on the information provided by the postdominator tree.
The second phase, in which the algorithm tries to factor common control
dependencies between nodes by substituting them with dependencies on re-
gion nodes that summarize sets of control dependence predecessors, is further
structured in two steps:

e insert region nodes "from the bottom”, which is summarize common
control dependence predecessors

e insert region nodes ”from the top”, which is create a region node each
time a node has more than outgoing control dependence edge with a
given label

This yields a complete factoring of common control dependencies, but
is quite heavy both from the point of view of computational complexity
and from the point of view of implementation difficulty. It is worth noting
that, in later works, this phase has been somewhat simplified [12] since it is
not clear whether there is need for such a complete factorization of control
dependencies.

A commented pseudocode description of the algorithm follows:

1.1 - computation of exact control dependencies
######## START 1.1 #

compute the postdominator tree
(see the appropriate section for further info)

FOREACH(edge (A,B) in the CFG)

{
if (A is not an ancestor of B in the postdominator tree)
{
current_node := B
WHILE(current_node != parent(A))
{

mark current_node as control dependent from A
with the same label as the (A,B) edge in the CFG
current_node := parent(current_node)

19

ﬂ AE SDGs in Earendil
‘ 3 ALGORITHMS INVOLVED SDG CONSTRUCTION

X
#ttttt END 1.1 #

- 1.2 - insertion of region nodes to factorize common control dependencies
#i#### START 1.2 #

FOREACH (node N in the post-dominator tree, in postorder traversal)
{
CD := set_of_control_dependence_predecessors(N)
if (there is no region node associated to set CD)
// i.e. no other node has already been visited with
// the same set CD of control dep. predecessors
// compare labels as well

{
// the CD parameter summarizes the operation
// of updating the data structures
// with the new association between the set of control
// dependence predecessors and the newly created region node.
R := new_region_node(CD)
create_edges (from every node in CD to R)
}
else
{
// the data structure (hash table as suggested in Ferrante et al.)
// is looked up for an association from set CD to a region node.
R := region_node(CD)
}

// we now have a region node accounting for the
// control dependencies of the node we are visiting.
make R the only control dependence predecessor of N

FOREACH(immediate child C of N in the post-dominator tree)
{

// the set used to compute the intersection is the original

// set of CD predecessors, not the one taking into account

// potential inserted region nodes. The CD sets for the children
// have already been computed since we are traversing the tree

20

e SDGs in Earendil
‘ 3 ALGORITHMS INVOLVED SDG CONSTRUCTION

// in postorder.
INT := intersection (CD,set_of_control_dependence_predecessors(C))

if (INT equals CD) // CD(N) is contained in CD(child)

{
delete_edges (from nodes in INT to region_node(child))
create_edge (from R to region_node(child) with no label)

if (set_of_control_dependence_predecessors(C) equals INT)
// i.e. CD(child) is contained in CD(N)
// Ferrante et al. says "if every control dependence
// of the child is contained in INT"
// but INT cannot have any member that is not in CD(C).

delete_edges (from nodes in INT to R)
// notice that the following statement relies on
// the fact that the child statement has a single
// control dependence predecessor, i.e. a single
// region node has already been created for it, which
// is guaranteed thanks to the postorder traversal.
create_edge (from region_node(child) to R with no label)

// we should now make sure that no predicate node in
// the Control Dependence Subgraph has more than one successor
// with the same truth value.
FOREACH (predicate node P in the control dependence subgraph)
{
if (there is more than one control dependence successor with label L)
{
succ := set_of_control_dependence_successors(node P, label L)
R := new_region_node({P})
delete_edges (from P to succ with label L)
create_edge (from P to R with label L)
create_edges (from R to nodes in succ with null label)

21

AE SDGs in Earendil
‘ 3 ALGORITHMS INVOLVED SDG CONSTRUCTION

####### END 1.2 #

3.2 A different approach starting from the AST

A different approach is to construct the PDG starting directly from the
Abstract Syntax Tree of the program [7]. Since the AST is built incrementally
as the source code is parsed, this kind of approach allows to avoid computing
intermediate auxiliary graphs such as the CFG and the PostDominator tree.

This algorithm is rather straightforward and definitely more intuitive than
the original one proposed in [8]. The drawback is that it is highly language-
dependent since extracting information from the AST implies knowing in
advance all the control structures present in the original language, while the
more traditional approach exploits information from the CFG, which is an
abstract representation, and as such is more general.

22

= SDGs in Earendil
' REFERENCES

References

[1] M.D.Santambrogio, “A methodology for dynamic reconfigurability in
embedded system design,” 2004, m.Sc. Thesis.

2] “Boost c++ libraries.” [Online]. Available: www.boost.org

[3] S. Sinha, M. J. Harrold, and G. Rothermel, “System-dependence-graph-
based slicing of programs with arbitrary interprocedural control flow,” in

Proceedings of the 21st international conference on Software engineering.
[EEE Computer Society Press, 1999, pp. 432-441.

[4] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing using de-
pendence graphs,” ACM Trans. Program. Lang. Syst., vol. 12, no. 1, pp.
26-60, 1990.

[5] D. Liang and M. J. Harrold, “Slicing objects using system dependence
graphs,” in Proceedings of the International Conference on Software
Maintenance. TEEE Computer Society, 1998, p. 358.

[6] J. Krinke, “Identifying similar code with program dependence graphs,”
in Proceedings. Eighth Working Conference on Reverse Engineering,
2001., 2001, pp. 301-3009.

[7] M. J. Harrold, B. Malloy, and G. Rothermel, “Efficient construction of
program dependence graphs,” in Proceedings of the 1993 international

symposium on Software testing and analysis. ACM Press, 1993, pp.
160-170.

[8] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program depen-
dence graph and its use in optimization,” ACM Trans. Program. Lang.
Syst., vol. 9, no. 3, pp. 319-349, 1987.

9] S. Horwitz, J. Prins, and T. Reps, “On the adequacy of program de-
pendence graphs for representing programs,” in Proceedings of the 15th
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. ACM Press, 1988, pp. 146-157.

[10] K. D. Cooper, T. J. Harvey, and K. Kennedy, “A sim-
ple, fast dominance algorithm,” 2001. [Online]. Available: cite-
seer.ist.psu.edu/cooperOlsimple.html

[11] T. Lengauer and R. E. Tarjan, “A fast algorithm for finding dominators
in a flowgraph,” ACM Trans. Program. Lang. Syst., vol. 1, no. 1, pp.
121-141, 1979.

23

= SDGs in Earendil
' REFERENCES

[12] K. J. Ottenstein and S. J. Ellcey, “Experience compiling fortran to pro-
gram dependence graphs,” Softw. Pract. Ezper., vol. 22, no. 1, pp. 41-62,
1992.

24

